Gününüzde Kullanılan Prostetik Damar Grefleri, Özellikleri ve Kullanım Alanları

Noyan Temuçin OĞUŞ, Erdemir NASERİ, Ergun DEMİRSOY, Halit İŞKLAR, Sinan ARSAN, Oral PEKTAŞ

T.C. Maltepe Üniversitesi Tip Fakültesi Kalp ve Damar Cerrahisi, İstanbul

ÖZET

Prostetik damar grefleri günümüzde çeşitli dokuma teknikleri ve kimyasal işlemler sonucunda oluşturulan materyelleri şekillendirilerek gref haline getirilmesi

Prostetik damar grefleri günümüzde çeşitli dokuma teknikleri ve kimyasal işlemler sonucunda oluşturulan materyelleri şekillendirilerek gref haline getirilmesi yöntemiyile sunül olarak ya da çeşitli yöntemlerle canlandırıldan edilen grefler halinde kullanılmaktadır. Çeşit fazlağı ve kullanım alanlarındaki farklılar, grefler hakkında detaylı bilgi sahibi olmayı gerektirmektedir. Son yıllardaki gelişmeler prostetik damar greflerini damar cerrahisine ilave olarak, invaziv radyolojinin de alanlarına dahil etmiştir. Yazımızda greflerin imalatı, özellikleri, bu özelliklerin neden olduğu kullanım endikasyonları ile greflerin piyasadaki fiyatları derlenmiş bir şekilde ifade edilmektedir.

Anahtar Kelimeler: Prostetik damar grefleri, perüktan yerleştirilen intraluminal grefler

SUMMARY

SYNTHETIC VASCULAR GRAFTS: AN OVERVIEW

Both synthetic and biologic prosthetic grafts are widely used in vascular surgery. Biologic ones are procured by various techniques and the synthetic ones are either woven or knitted or made by chemical methods. In order to use them properly a detailed knowledge of their properties is necessary. Now a days in addition to vascular surgeons, they're also used by invasive radiologists in percutaneous procedures. In this review we present a brief information regarding their properties, manufacting processes and the most appropriate circumstances of their usage.

Key Words: Prosthetic vascular grafts, percutaneous inserted intraluminal grafts

GİRİŞ

Dubost’un homogrefflerle (1) ve Voorhees’in Vinyon-N ile yaptıkları çalışmalar (2), damar grefleri tarihinde prostetik materyeller konusunda başlangıcı oluşturur. Bu tarihten sonra çeşitli materyellerle ve çeşitli doku-ma teknikleri kullanarak birçok prostetik gref imal edilmiş, bunların bir kısımı günümüze kadar geliştirilerek gelmiş, bazıları ise deneySEL aşamanın ötesine gidenememişlerdir. Halen birçok firma ait çeşitli prostetik grefler piyasada yaygın olarak kullanıma arz edilmektedir. Prostetik grefler arasındaki farklar bazen yok danecek kadar az, bazen de gref seçiminin etkileyecerkadar belirgin olarak karşımıza çıkabildiği için bu özelliklerin tam olarak bilinmesi ve hasta için en yararlı olanının seçilmesi son derece önemli olmaktadır.

Ameliyat yapılmdan, invaziv girişimlerle
damarsal patolojlere müdahale edilebilmesi elbette hem hekimler hem de hastalar açısından özenli bir durumdur. Teknolojideki gelişmeler, zamanımızda bu imkanı ancak azınlıkta bir hasta populasyonu için mümkün kılmaktadır. Son yıllarda ortaya çıkan ve yurt dışında ilgiyle karşılanan “perkütan intralüminal greft insersiyonları” damar cerrahisi ve invaziv radyolojinin umit-veren gelişme sahadır. Yazımızda imalattan başlayarak piyasadaki tüm greffleri incelemeyi, farklılıklarındaki özellikleri biraraya toplamayı ve bugüne kadar olan cerrahi gelişimleri hekimlerimize hatırlatmayı amaçladık.

A. İMALAT: Tüm prostetik greffler fabrikalarda dokuma (textile) veya özel tekniklerle materyalin ısıtma ya da germe gibi işlemlerden geçirilerek bir türp etrafında sarmalı (nontextile) ile edildiktedir (3). Piyasadaki tüm dokuma greffler DACRON’dan (polyethylene terephtate) imal edilmişdir ancak tarihsel gelişim açısından dacron’dan başka ne gibi materyallerin kullanılduğu da bilmek gerekir. Bu tip dokuma grefflerde iplik materyeli olarak 3 cins malzeme kullanılabilir; monofilaman iplikler (nylon, orlon, ivalon ve paslanmaz çelik); multifilaman (polimerler) iplikler (teflon ve dacron) ve lifli iplikler (yün, pamuk). Dacron dışında kullanılan bu materyellerin tümü, dokuma şekli ne olursa olsun, daha önce belirtilmiş gibi greft için erken dönemde mekanik yetmezliğe neden olmaları nedeniyle terk edilmişlerdir çünkü uzun süre değişken tansiyona mukavemet gösteremezler (4). Teflon, iplik seklinde hazırlanması ve bu ipliklerin dokumadaaki güçlükleri nedeniyle tercih edilmekle ancak başka tekniplerle teflon kullanılan prostetik greffler imal edilebilmektedir. Dacron iplikler elde edildikten sonra 4 değişik teknik ile dokunmakta dirlar. Bu dokuma teknikleri, dacron grefflerin esas özelliklerini belirler. Şekil 1’de dokuma teknikleri görülmektedir.

1- Weaving (klasik dokuma): İplikler bir alttan, bir üstten geçerek şekilde sıkı bir ağ yapar. İplikler arası açı 90 derecedir ve bu iplikler arasındaki mesafe azdır (düşük porozite), kalın ve sert grefflerdir. Bu çeşit dokunan greffler WOVEN greffler olarak bilinirler. Avantajları şapılabılır ve düşük porozitedir, zamanla en az uzama ve genişleme gösterirler, dezavantaj ise kesilen kanlarların tırtıltılmasıdır, bu nedenle koterle kesilmesi uygundur.

2- Braiding (örme dokuma): İplik dokunması yine bir alttan bir üstten olacak şekilde ancak saç örgüsü gibi çapraz konuşlandırılmıştır, porozitesi düşüktür.

3- Knitting (ilimiki, halı tarzı dokuma): İplikler zincir veya halkalar şeklinde dokunmuş, iç içe geçirilmişdir. İplikler arası mesafe fazladır; porozite yüksektir, kompliyanlıs
fazladır, zamanla fazla miktarda uzama ve genişleme gösterirler. Bu şekilde dokunan grefter KINNITTED grefter olarak bilinirler.

Dacron grefterlerin önemli bir özelliği de implanstasyondan bir süre sonra genişlmesidir. Dacron grefter invivo ortamda ortalama % 17,6 oranında sirkumferansiyel dilatasyona (çapi genişler), aynı zamanda elongasyona uğrar (6). İmplantasyon sonrası klemkin kallarımsıyla üretici firmanın belirttiği boyutlar %10 ila 20 oranında büyüme olur (7), zamanla bu büyüme, hız azalmakla beraber devam eder (8,9). Ultrason da CT ile yapılan geç çalışmalarda; 1-20 yıllık sürede içinde, % 23-94 oranında büyümeye bildirilmişdir (7-10). Greftte çap hızında seçilmiş yapılırken bu hızın göz önüne alınmalı, işlem esnasında greftin uzayacağına da düşünlerek, gergin bir şekilde implant edilmelidir.

Dokuma grefter ilk yapıldıkları yıllarda düz, tüberler şeklinde imal edildi ancak direklenme yerlerinde kinking gibi önemli bir problemde neden olmaktağıldır. İlk kez bir makinenin dokuma hatası olarak ortaya çıkardığı “akordiyon” şeklinde dokuma; CRIMPING işlemi adı altında süratle klinik kullanıma girmiş ve kinking olayı büyük oranda engellenmiştir. Günümüzde tüm dokuma grefterde bu işlem uygulanmaktadır.

Porozite, greft implantasyonundan sonraki iyileşme safhasında önemli bir parametre olarak önemüze çıkmaktadır. Weslovsaki ve arkadaşları yaptıkları invitro çalışmalarda (11), iyileşmenin optimal olabilmek için, greftin, 1 cm²’lik alanlardan 120 mmHg’lik sabit bir basınçla, dakikada 5000 ml su geçmesi gereklidir oldugunu göstermişlerdir. Bu amaçla Maedox Medical firmasının Weavenit (4000 ml/dk/cm² porozite) adlı greftin 75 hastaya implantasyonunda, erken safhada sonuçların mümkün olmasına karşılık, geç dönemde greft yetmezliğinin sık görülmesi üzerine yüksek porozitenin iyileşmenin ancak erken safhasında olumlu etki gösterdiği sonucuna varılmıştır (12). Günümüzde kullanılan sentetik grefterin poroziteleri 0 ila 2000 ml/dk/cm² arasında değişmektedir.

Germe kuvveti de, hem cerrahi manipülasyon hem de grefatin mekanik yetmezliği açısından önemlidir. Günümüzde piyasadaki tüm grefterde, grefte ait mekanik yetmezlik, dokuma tekniklerinin geliştirilmesiyle (Warp knitting gibi) oldukça azaltılmıştır.

Tablo II'de gösterilmiştir (3,4,13-18). Compound greftlerin (19,20) dezavantajları; istenmeyen iyileşme karakterleri, albumin kullanımda nedeniyle albumine karşı oluşabilecek potansiyel inflamatuvar cevap ve erken dönemdeki trombojenitedir. Avantaj ise 0 poroziteli ol-

TABLO 1. Piyasada bulunan bazı damar greftleri ve yapıları

<table>
<thead>
<tr>
<th>Greft</th>
<th>Yapısi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knitted</td>
<td></td>
</tr>
<tr>
<td>USCI Bionit II</td>
<td>Dacron warp knitted external velour</td>
</tr>
<tr>
<td>USCI Vascular II</td>
<td>Dacron warp knitted internal velour</td>
</tr>
<tr>
<td>Meadow Microval</td>
<td>Dacron warp knitted double velour</td>
</tr>
<tr>
<td>Meadow Cooley Double Velour</td>
<td>Dacron warp knitted double velour</td>
</tr>
<tr>
<td>Woven</td>
<td></td>
</tr>
<tr>
<td>USCI Woven</td>
<td>Dacron woven</td>
</tr>
<tr>
<td>Meadow Woven Double Velour</td>
<td>Dacron woven double velour</td>
</tr>
<tr>
<td>Medox Cooley Verysoft Woven</td>
<td>Dacron woven</td>
</tr>
<tr>
<td>Knitted Coated (Compound) greftler</td>
<td>Albumin coated</td>
</tr>
<tr>
<td>USCI Vascular II-Albumin</td>
<td></td>
</tr>
<tr>
<td>Meadow Microval Hemashield</td>
<td>Collagen coated</td>
</tr>
<tr>
<td>Non-Textile</td>
<td></td>
</tr>
<tr>
<td>Gore-Tex</td>
<td>Expanded PTFE</td>
</tr>
<tr>
<td>Impra</td>
<td>Expanded PTFE</td>
</tr>
<tr>
<td>Vitagraf</td>
<td>Expanded PTFE</td>
</tr>
</tbody>
</table>

Tablo II'de gösterilmiştir (3,4,13-18). Compound greftlerin (19,20) dezavantajları; istenmeyen iyileşme karakterleri, albumin kullanımda nedeniyle albumine karşı oluşabilecek potansiyel inflamatuvar cevap ve erken dönemdeki trombojenitedir. Avantaj ise 0 poroziteli ol-

TABLO 2. Piyasada bulunan bazı greftlerin fiyat, porozite, germe kuvveti, kalınlık, precolling gereksinimi ve cerrahi manipülasyonlar açısından karşılaştırılması.

<table>
<thead>
<tr>
<th>Greft ve tipi</th>
<th>Fiyat*</th>
<th>Porozite ml/cm²/dk</th>
<th>Germe kuvveti</th>
<th>Kalınlık (mm)</th>
<th>Precolling gereksinimi</th>
<th>Cerrahi manipülasyon</th>
</tr>
</thead>
<tbody>
<tr>
<td>USCI Bionit II</td>
<td>348USD</td>
<td>1200</td>
<td>30</td>
<td>0.51</td>
<td>3 kez</td>
<td>iyi</td>
</tr>
<tr>
<td>USCI Vascular II</td>
<td>348USD</td>
<td>1500</td>
<td>30</td>
<td>0.54</td>
<td>4 kez</td>
<td>iyi</td>
</tr>
<tr>
<td>Meadow Microv</td>
<td>324 USD</td>
<td>1900</td>
<td>9</td>
<td>0.58</td>
<td>4 kez</td>
<td>iyi</td>
</tr>
<tr>
<td>Meadow Cooley</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double Velour</td>
<td>309USD</td>
<td>1400</td>
<td>9</td>
<td>0.59</td>
<td>3 kez</td>
<td>iyi</td>
</tr>
<tr>
<td>USCI Woven</td>
<td>230USD</td>
<td>160</td>
<td>50</td>
<td>0.24</td>
<td>1 kez</td>
<td>kötü</td>
</tr>
<tr>
<td>Meadow Woven</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double Velour</td>
<td>398 USD</td>
<td>280</td>
<td>20</td>
<td>0.34</td>
<td>2 kez</td>
<td>iyi</td>
</tr>
<tr>
<td>Meadow Cooley Verysoft Woven</td>
<td>294USD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USCI Vascular II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albumin C.</td>
<td>525 USD</td>
<td>100</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>çok iyi</td>
</tr>
<tr>
<td>Meadow Microv</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemashield</td>
<td>550 USD</td>
<td>10</td>
<td>6.5</td>
<td>-</td>
<td>-</td>
<td>çok iyi</td>
</tr>
<tr>
<td>Gore-Tex</td>
<td>495 USD</td>
<td>0</td>
<td>180</td>
<td>0.91</td>
<td>-</td>
<td>orta</td>
</tr>
</tbody>
</table>

*Fiyatlar tubüler greftler için ABD üretici fiyatlandırılmış.
maldır. Albumin coated greftlerin FDA onayı yoktur, çalışmalar ABD’de köpekler üzerindeki deneylerle henüz devam etmektedir ancak bu greftler tüm avrupa ve asyaada yaygın olarak kullanılmaktadır (20-22).

Burada COMPOUND greftlerle COMPOSITE greftler arasındaki önemli farklara değinmek gerekir; Composite greftlerde birden fazla greft kullanılmaktadır. Örneğin; PTFE greftin, diz seviyesinde kink yapacağı düşündürülen, proksimalde PTFE kullanılması ve diz seviyesinin, bu PTFE grefte anastomoz edilen bir safan ven grefti ileECH mesi durumunda kullanılan greft icomposite greft denir. Composite greftlerde avantaj, vücud dinamiğine uygun olacak greft seçiminin yapılabilmesidir. Dezavantaj ise anastomoz için ameliyat süresinin artması, buna bağlı enfeksiyon oluşumu ve anastomoz hakkında trombus riski olarak nitelendirilebilir.

Cerrahi manipülasyonları etkileyen faktörlerle gelince; greftin kink yapmaması, ince duvarlı olması, içine deliklerinden kanama olması, iğnenin greften kolay geçirilemesi ve iğne geçiş esnasında greft dokusunun bütünliğinin bozulmasına aranan özelliklerdir.

Son yıllarda tüm cerrahilerde ve özellikle Kalp ve Damar Cerrahisi’nde maliyet unsurları hasta sayısındaki artışa paralel olarak gitkçe önem kazanmaktadır. Tablo II’de de görüldüğü gibi 230-550 USD arasında fiyatlarla greft temini mümkündür. Hasta için elzem olan şartlardan taviz verilmeden, en ucuz fiyat sahib greftin seçimi yerinde bir yaklaşım olur kans受限asyon. Non-textile greftlerle gelince; bunlar da polytetrafluoroethylene (PTFE) nodüllerinin ince fibrillerle birbirine bağlanması ile (expanded PTFE) meydana gelen materyel kulanılarak (teflon) elde edilirler. Teflon’un mikroskopik görünümü Şekil II’de temsili çizim olarak gösterilmiştir. Teflonun üretilmesi ve kullanımdaki çeşitli işlemlerin geçirdikten sonra bir timp etrafına sarılması yöntemle tüpler PTFE greft elde edilir (23-25). Polimerin temel moleküler yapısı, fluorine atomları ile birbiri-ne bağlı karbon zincirleridir. Yüksek molekül ağırlığı ve yüksek ısı ile yapısının bozulması nedeniyle, dokuma işleminin uygunsuz olduğu ortaya çıkar. İmlantasyonun yanında 0 (sir) poroziteli kabul edilir (kımyasal olarak inert, hidrofobik ve yüksek elektronegatif yüksek sahiptir), asında makroporoz özelliği vardır ancak negatif elektron yükünden dolayı kan hücrelerinin geçişine, hidrofobik özelliğinden dolayı plazma sızmışa izin vermez, iyileşme sürecindeyse makroporoz greftler gibi optimal iyileşme sağlarlar (25). Bu nedenlerle Weslovski’nin (12) dokuma greftlerdeki porozitesi testi PTFE greftlerde geçersizdir. Kolay trombektoni yapılabilmesi diğer bir avantajdır. Küçük çaplı damarlarda uzun süreli açık kalma oranı yüksektr ve PTFE grefti için tercih nedenidir. Solid yapısı nedeniyle enfeksiyona karşı dokuma greftlerine göre daha dire-
nçli olduğu düşünülür, daha az kompleman aktivasyonu ve daha az immünolojik reaksiyon bildirilmştir (26), bu hadise, postoperatif anastomotik anevrizma görüleceğini rahatça dokuma greftlere nazaran anlamalı derecede az görülmesine neden olmaktadır (27). Parakorporeal anevrizma riski (24) son yıllarda en dış tabakaya sikümeransiyel güçlenme sağlayan bir kat PTFE sanalmasına bertaraf edilmiş (28), nativ arter elastisitesine yakın bir elastisite elde etmek amacıyla MICROCOR RIMPING denilen işleme tabi tutularak gref tin yumuşaklığına ilave olarak düz bir lumen yüzeyi ve esneklik elde edilmiştir. PTFE greftlerde, implantasyon sonrası çok uzun süreli takip olmamakla birlikte, enine ya da boyuna uzama bildirilmemistir.

Son yıllarda bazı yeni jenerasyon greftlerden (40-42), yeni materyel ve uygulama farklılıklarından sıkça söz edilmektedir, bunlara kısa bir döşenmek gerekir kanısındayız;

Perkutan intralümler gref uygulamaları: Kardiyoloji ve radyolojiye teknik imkanların ilerleyerek endovasküller girişimlerinin yaygınlaşmasıyla birlikte, anevrizmazal ve tikayıci periferik damar hastalıklarında idaha az invaziv tedavi yöntemleri” arayışı içine girilmistir. Son yıllarda perkutan yerleştirilecek uygulanın intralümler grefler, arterio-venöz fistüllerin kapatılmasında, tikayıc perifer damar hastalıklarının ve abdominal aortanın anevrizmal hastalıklarındaki tedavi girişimlerinde başarıyla uygulanmaktadır. Bu teknik, stentler aracılığıyla anastomozlardaki dikiş kerekliliğini ortadan kaldırarak, işlemi cicahi bir işlem olmakta çıkaran gref implantasyonuna imkan sağlamaktadır.

gününümüzdeki yüksek fiyatlardan önemli bir dezavantaj sayılmakla birlikte, hastanın hastanedede kalış süresinin kusalığı, işlem sonrası tedavi masrafının olmaması gibi avantajlarla beraber değerlendirildiğinde maliyetinin çok yüksek olmadığı ve hatta sonunda belirtildiği gibi kullanımının yaygınlaşması ile fiyatının ucuzlayabileceği de söylenebilir.

Perkutant yerleştirilen intralüminal greftlerin abdominal aortanın anevrizmal hastalıklarındaki ilk uygulamaları Şekil IV’te gösterilen teknikle Parodi ve arkadaşları tarafından gerçekleştirilmiştir (44). Parodi, Palmaz stentlerine ince Dacron grefteri tespit ettikten sonra, bunu bütünüyle 17 F koryuyucu bir kılıf içine yerleştirilmiş ve perkütan olarak abdominal aortalarda anevrizmatik segmentin içinde geçirerek, anevrizmanın proksimalindeki sağlam bölgeye yerleştirilmiştir. Palmaz stenti balonla şişirildikten sonra, anevrizmatik alanın kanla olan iliskisi kesil酡e, proksimalden gelen kan akımı, greft vasitasıyla distale iletilmektedir. Tekniğin üstünüğü, intralüminal greftin femoral bölgesinde yapılan küçük bir insizyonla yapılmasını, yani laparotomiye ihtiyaç kalmamasıdır. Cerrahi yaklaşıma, aortanın geçici bir süre de olsa klempenmesini gerektirdiği için, bunun sa-
TABLO 3. Parodi ve arkadaşlarının perkütan intralümalı greft uyguladıkları ilk 50 hasta da görülen komplikasyonlar

<table>
<thead>
<tr>
<th>Görülen komplikasyonlar</th>
<th>Hasta sayısı</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kasıcta hematom</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Preksimal kaçak</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Eksternal iliac arter yaralanması</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Distal mikroembolizasyon</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Distal kaçak</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Toplam</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

Minimal invazif bir yöntem olan perkütan intralümalı greft insersiyonları, büyük cerrahi girişimlere gerek duymadan, hastaya en az rahatsızlık vererek, alışılmış cerrahi tekniklerin başarı oranlarını yakalayabilen, hatta bazı durumlarda cerrahi yaklaşımın mümkün olmadığı durumlarda uygulanabilir oluşuyyla avantaj yaratan girişimlerdir. İşlemın cerrahi müdahalelere göre son derece çabuk ve güvenilir sonuçlar sağlaması, tek-
Kardiyak Periferik Serebral

İskemik olayların önlenmesinde

TICLID®

Tiklopidin 250 mg

Risk Gerçekçe Dönüşmesin
ETKİLİ BİR DÜŞÜK MOLEKÜL AğIRLIKLI HEPARİN

- Peri ve Postoperatif Döneme
- Tromboembolik Komplikasyonların önlenmesinde
- Akut Derin Ven Trombozu ve/veya Pulmoner Emboli tedavisisinde
noloji ve uygulamadaki tecrübe artışıyla, sonuçların daha da başarılı olacağı hususunda ümit vermektedir.

Biyolojik prostetik greftler: İlk olarak 1940’larda, sentetik materyel bulunmadığı için kadavralardan alınan arteriel greftlerle kullanilmaya başlanmıştır (1). Doku gruplarının uyumazlığına bağlı olarak (48) özellikle venöz greftlerin uzun dönem açık kalma oranları son derece düşüktür (49-51), saklanma tekniği ne olursa olsun, arteriel homogreftlerde uzun dönem sonuçları kalsifikasyon, dejenerasyon ve anevrizma formasyonu nedeniyle kötüdür (52-54) ve günümüzde en önemli prostetik greftlerin reperasyonu ve aortik valvi de içeren valv kondüti insersiyonları dışında kullanılmaktadır (55-56). Son yıllarda dimetilsülfoksid (DMSO) ve likit nitrojen (N₂O) kullanarak kırilyoprezervasyon yöntemiyle allogreftlerde yaşamalı fonksiyon korunması, immün reaksiyonun zayıflatılması ve uzun dönem sonuçları daha iyiye götürülmeye çalışılır ancak daha uzun süreli çalışmalarla güvenilirliği gösterilmelidir (56-57).

Umbilikal ven allogreft: 50 cm boyunda, dalsız ve uniform bir vendir. Kullanım yeri alt ekstremitelerde, safen venin çıkarılmadığı veya huzur bir operasyon gereğiyle çıkarılması durumlarında, bununla beraber ekstaraanatomik ve aortorenal bypasslarda da kullanılır. İyi kompliyansına ve elektrokimyasal özelliklerine bağlı olarak geç döneme geçişli sonuçlara iyiştir. Dizüstü seviyede açıklik oranı safen venin venle aynı kabul edildi, dizaltı seviyede ise safen veden daha iyi olduğu bildirilmiştir (58-59). Bazı yazarlar her iki seviyede de umbilikal ven allogreftlerin PTFE greftlerden üstün açıklik oranı göstereceğini öne sürmüştür (60-61). Bazı yazarlar da iki greft arasında fark olmadığını belirtmektedir (62-63). Hazırlanmasına ve implant edilmesindeki teknik güçlükler, umbilikal ven kullanımını sınırlamaktadır (64).

Xenogreftler: Daha çok sığır ve domuzdan elde edilirler, istünlükleri yoktur (65).

Fibrokolajen tüber: henüz hayvan deneylerindeki sonuçlar bildirilmektedir. Cilt veya rektus fasyası alma poliüretan, polivinil, silikon ve knitted dacron gibi materyellerden yapılmış tüber yerleştirilir, 4-6 hafta sonra tüberin etrafında oluşan fibrokolajen yapıdaki çok dokusu blok halinde çıkartılacak implant edilir. 30 ay açıklığı gösterilen greftler bildirilmektedir (66-67).

Tamamen rezorbe olan greftler: Poliglaktine 910-Polydioxanonal compound greftlerdir. Deneysel sahafadadır.

B-HANGI GREFT?

Piyasadaki greftlerin özelliklerinin incelemesinden sonra bu greftlerden hangisinin, hangi tip hasta ve hastalıktaki seçileceği hususunun açıkça kavuştuşulması gerekliklidi. Cerrahinin kişisel tercibi, greft tipinin belirlenmesinde belirli kuralara uymak kaydıyla önemli bir faktördür. Örneğin rüptüre bir abdominal aorta anevrizmasında, hastalık nedeniyle oluşan kan kaybına ilave olabilecek greft yüzeyinden kanama, hasta tarafından kolayca toler edilemeyecektir. Böyle bir durumda knitted bir greft seçimi, aşırı kan kaybı ve/veya aşırı kan transfuzyonları ile DIC’e zemin hazırlayabileceği için, tercih Woven, compound veya PTFE greftler yönünde olmalıdır.

Öncelikle yapılan istatistikler 1970’li yıllarda hangi greftlerin hangi pozisyondan kullanmanın daha başarılı sonuçlar verdiği bilinmesi gereklikdir; aorta için kullanılan greftlerde textile ve non-textile greftlerin uzun süreli açıklik oranı bakımından aralarında anlamlı bir fark yoktur. Arkus aorta ya da aorto iliyak bileşkede PTFE greftlerin kink yapma ihtimalleri daha fazla olduğu için tercih edilmektedir; Ayrıca textile greftler daha ince duvarlı olduğu ve iğne deliklerinden daha az kanama ya neden oldukları için bu konumları cerrah tarafından tercih edilebilirler. Optimal iyileşme knitted greftlerle olmaktadır ancak kanamanın az olması nedeniyle woven greftler de kullanabilir. Özellikle boyu uzun
greftler için sizini olmaması önemlidir, bu nedenle PTFE veya compound greftler tercih edilir. Đizüştü pozisyonda femoropopliteal ve axillobrakial bypasslarda otojen safen ven kadar uzun süre açık kalma oranlarıyla PTFE greftler tercih edilebilir. Femoropopliteal bypass'arda diz altı pozisyonda otojen safen ven greftlerin PTFE greftlere bariz üstünlüğü vardır. Otojen safen greftler hem erken dönem hem de geç dönemde daha yüksek açık kalma oranı göstermektedir (68). Textile greftlerde greft çapının düşük ve akım hızının yavaş olması, daha erken greft yetmezliği neden olmaktadır, böyle durumlarda umumîal veziküler bypass ameliyatlarında küçük çapa daha uzun süre açık özellik oranı, daha düşük trombojenite ve trombektomi uygulanma kolaylığı (76-79) nedeniyle PTFE greftler textile greftlere tercih edilmelidirler. Uzun ameliyat süresinin sakınca yaratabileceği ile ri yaşta ve genel durumu bozuk hastalarda alt ekstremitelerde uygulanacak bypass ameliyatları için safen venin edilmesi için yapılan insizyonlar hem ameliyat süresini uzatmak, hem yapılan insizyonlar ilave hastalıklara bağlı olarak geç iyileşmekte hem de hastanın mobilizasyonunu bozabilerek postoperatif komplikasyonlara neden olabilir. İskemik hadisinin ekstremiteyi tehtit ettiği bu tip yaşlı ve genel durumu bozuk hastalarda PTFE greft kullanım ekstremitenin kurtarılması amacıyla önerilmektedir (80) ancak dizaltı seviyede PTFE greftlerin açıklık oranının safen veninden daha düşük olduğu unutulmamalıdır (68).

Zamanında her geçen gün yeni bir takım gelişmeler süregelen yöntemlere karşı alternatif tekniklere imkan sağlamaktadır, itedavi i giderek daha az mortal, daha az morbidity daha az invaziv yöntemlere doğru kaymaktadır. Son yillardaki gelişmeler, homogreftlerin ve/perkütan endovasküler greftlerin uygulanması ve başarı oranlarında anlamlı artışlara zemin hazırlamış ve bu yöntemlerin gelecekte daha da yaygın olarak kullanılacağina dair belirtiler vermektedir.

KAYNAKLAR

76- Hamlin GW, Raham SM, Crow MJ, et al: Evaluation of the trombogenic potential of three types of arterial grafts stu-