Aortic Aneurysms, Surgical and Endovascular Treatment

M. Onur HANEDAN, a
Ufuk TÜRKEN, a
Tezcan BOZKURT, a
Keser TURAL, a
Sertan ÖZYALÇIN, a
Burak ERDOLU, a
A. Tulga ULUS a

Clinic of Cardiovascular Surgery,
Türkiye Yüksek İhtisas Training and Research Hospital,
Ankara, Türkiye/TURKEY

Should We Screen Coronary Artery Bypass Grafting Patients for Abdominal Aortic Aneurysm?

Koroner Baypas Cerrahisine Giden Hastaları Abdominal Aort Anevrizması İçin Taramalı mıyz?

ABSTRACT Objective: Ruptured abdominal aortic aneurysm (AAA) is associated with 95% mortality rate. It is possible to decrease this rate by screening this disease. In this study, our aim is to evaluate effectiveness of screening AAA in atherosclerotic patients who were hospitalized for coronary artery bypass grafting (CABG) surgery. Material and Methods: Fifty male patients older than 60 years of age and who were planned to have CABG or were admitted for routine follow up after CABG were included in the study between January 2010 and January 2011. Results: The mean age was 68.2±5.7 (60-86) years. Four patients (8%) had increased diameters, 2 (4%) had aneurysms and 2 (4%) had dilatation. The patients with increased abdominal aortic diameter were older than 65 years of age and had hypertension. The aortic pathology was below the renal arteries in those patients. Conclusion: According to the results of first 50 patients of this ongoing study; screening for AAA is feasible in patients who undergo CABG, especially in men older than 65 years of age. High mortality rates of rupture AAA can indicate absence of screening programs. Our study reports early results for these patients.

Key Words: Abdominal aortic aneurysm; coronary artery bypass grafting; elderly

Anahtar Kelimeler: Abdominal aort anevrizması; koroner arter baypas greftleme; yaşlı

Damar Derg 2013;22(2):206-10

The diameter of abdominal aortic aneurysm (AAA) is the best predictor for rupture risk. There is a substantial increase in rupture risk as AAA diameter increases from 5 cm to 6 cm.1,2 The diameter is not the only predictor for rupture, but also gender, hypertension, smoking and chronic obstructive pulmonary disease have been observed as predictors for rupture of the aneurysm.1 Furthermore, the aortic diameter increases with age, and is larger in men compared to the women. Besides being rupture
predictors, family history of AAA and coronary artery disease are also risk factors for development of AAA. Female gender, African ethnic origin, and diabetes mellitus all have a protective effect, probably via a genetic mechanism.

According to best available current evidence, 5.5 cm diameter appears to be an appropriate threshold for AAA repair. However, subsets of younger low-risk patients, with long projected life-expectancy, may prefer early repair. Several international guidelines recommend screening of AAA by ultrasound in the high-risk population. Ultrasonography (US) of the abdominal aorta is a safe and a technically simple method to identify AAAs. Ultrasonography is a valid diagnostic technique with a sensitivity and specificity of 98%. High mortality rates from rupture AAA can indicate absence of screening programs.

In this study, our aim is to evaluate effectiveness of screening AAA in atherosclerotic patients who were hospitalized for CABG, and to diagnose and treat aneurysm in an earlier period.

MATERIAL AND METHODS

PATIENTS

Fifty male patients older than 60 years of age who had undergone coronary artery bypass grafting (CABG) surgery or were admitted for routine controls after CABG were randomized between January 2010 and January 2011. All patients were prospectively evaluated in this study. Abdominal aortic Doppler US was performed to all patients before CABG. Doppler US was performed with Logiq 7 (GE Healthcare Tokyo, Japan) 4 Mhz convex probe by the same radiologist. Abdominal aorta was measured in three levels; diaphragmatic, superior mesenteric artery (SMA), iliac bifurcation levels using coronary and sagittal planes. The evaluation was performed from the adventitia to adventitia of the aortic tissues.

MODEL AND FOLLOW UP

Patients were grouped according to abdominal aortic diameters. Patients who had less than 3 cm diameter of abdominal aorta were not followed up, 3-4.5 cm diameters followed up every year and 4.6-5.4 cm diameters followed up every 6 months. Patients who had larger than 5.5 cm abdominal aortic measurement underwent to surgical repair or endovascular grafting after CABG.

STATISTICAL ANALYSIS

Statistical analyses were performed with SPSS 17.0 software (SPSS Chicago, Illinois). Continuous variables were expressed as median (25-75%); categorical variables were defined as percentages. Mann Whitney U test was used to determine differences between continuous variables. The categorical variables were compared with Chi-Square test. All p values less than 0.05 were considered as statistically significant.

RESULTS

Fifty patients were evaluated and demographic data of these patients is given in Table 1. All patients were males and their median age was 67 (60-86) years. Four patients (%8) had increased diameters, 2 (%4) had aneurysms and 2 (%4) had dilatation. Twelve (24%) patients had the family history for atherosclerotic disease.

Due to the abnormal abdominal aortic diameters, we divided patients into subgroups; all of them were older than 65 years of age and had arterial hypertension (HT). Abnormal aortic segment was in the infra-renal segment of the descending aorta in all patients. Demographic data of these 4 patients are summarized in Table 2.

There were no significant differences between the mean ages, ejection fraction (EF) of the subgroup (group 1) and the cohort (group 2). In addition, there were no significant differences in risk parameters between two groups such as diabetes mellitus (DM), HT, chronic renal failure and smoking. Only family history for atherosclerotic disease was significantly different between the two groups (p=0.038) (Table 3).

Three patients (75%) of the subgroup were smoking while 58.7% of the cohort were smoking (p=0.641). Only 1 patient (25%) had DM while 28.3% of the patients had DM in the cohort...
(p=1.000). All patients had HT in the subgroup however 52.2% had HT in the cohort (p=0.121). The mean age was 73.3±9.5 in Group 1 and 67.7±5.2 in Group 2 (p=0.213).

DISCUSSION

Abdominal aortic aneurysm (AAA) can be defined as the increase of diameter at least 50% greater than normal caused by the arterial wall pathologies. More than 80% of all AAAs are clinically asymptomatic and are discovered incidentally or during an ultrasound examination. The incidence of AAA is 4-8% in men and 1.5% in women over 60 years of age. Furthermore, AAA incidence is predicted to rise in parallel to an increase in globally aging population. Vessel dilatation is often progressive and lack of effective non surgical therapy. Therefore, AAA expansion should be monitored frequently.

The overall mortality rate of AAA rupture can be as high as 80-90%. In the developing countries, 1-3% of the deaths of males between 65 and 80 years of age are due to ruptured AAAs. Recently, mortality rates of elective open AAA surgery have decreased to less than 5% and surgical repair seems to be a complete curative therapy.

In the absence of routine screening, diagnosis is often incidental during USG or other diagnostic examinations performed for other health complaints. AAA is usually progressive, and is often accompanied by the formation of a laminated, non-occlusive, intraluminal thrombus. At the cellular level, histological examination demonstrates that pathophysiological processes in AAA involve all layers of the aortic wall including the aortic media, contrasting to those observed for occlusive atherosclerosis. To describe the natural history of AAA; there are many published evidence or literature. AAA of 4.0-5.5 cm in diameter have a rupture rate of 0.7-1.0% per year and for AAA <4.0 cm, this rate is even lower. Women appear to have a higher rupture rate than men for small AAA. Median enlargement rate of AAA with 4.0-5.5 cm diameter is about 0.3 cm per year. Enlargement rate is related to AAA diameter. Enlargement rate of AAA has risen up to 3.0-4.0 cm. Rupture rates of AAA > 5.5 cm in fit individuals are unknown and unlikely to be known in the future. However, for unfit individuals with AAA >5.5 cm, the rupture rate is high, starting at about 10% per year and increasing by several fold in the largest AAA.

TABLE 1: Demographic data of patients in abdominal aortic aneurysm screening program.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Median (%25-75)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>67</td>
</tr>
<tr>
<td>LDL (mg/dL)</td>
<td>104.5</td>
</tr>
<tr>
<td>Abdominal aortic diameters (mm)</td>
<td></td>
</tr>
<tr>
<td>Diaphragmatic</td>
<td>21</td>
</tr>
<tr>
<td>SMA</td>
<td>18</td>
</tr>
<tr>
<td>Iliac bifurcation</td>
<td>15</td>
</tr>
<tr>
<td>DM</td>
<td>14 (28%)</td>
</tr>
<tr>
<td>HT</td>
<td>28 (56%)</td>
</tr>
<tr>
<td>CRF</td>
<td>2 (4%)</td>
</tr>
<tr>
<td>EF (%)</td>
<td>52.5±9.8</td>
</tr>
<tr>
<td>Smoking</td>
<td>30 (60%)</td>
</tr>
<tr>
<td>Family history for atherosclerotic disease</td>
<td>12 (24%)</td>
</tr>
<tr>
<td>Aortic dilatation</td>
<td>2 (4%)</td>
</tr>
<tr>
<td>Aortic aneurysm</td>
<td>2 (4%)</td>
</tr>
</tbody>
</table>

DM: Diabetes mellitus; HT: Hypertension; CRF: Chronic renal failure; LDL: Low density lipoprotein; EF: Ejection fraction; SMA: Superior mesenteric artery.

TABLE 2: Demographic data of patients who were captured in abdominal aortic aneurysm screening program.

<table>
<thead>
<tr>
<th>Age (yrs)</th>
<th>DM</th>
<th>HT</th>
<th>CRF</th>
<th>Smoking</th>
<th>Diaphragmatic</th>
<th>SMA</th>
<th>Iliac bifurcation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 1</td>
<td>67</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>25</td>
<td>16</td>
<td>33</td>
</tr>
<tr>
<td>Patient 2</td>
<td>86</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>22</td>
<td>47</td>
<td>50</td>
</tr>
<tr>
<td>Patient 3</td>
<td>75</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>25</td>
<td>30</td>
<td>66</td>
</tr>
<tr>
<td>Patient 4</td>
<td>65</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>25</td>
<td>23</td>
<td>63</td>
</tr>
</tbody>
</table>

DM: Diabetes mellitus; HT: Hypertension; CRF: Chronic renal failure; SMA: Superior mesenteric artery.
As mentioned before, most of the AAA are asymptomatic. “The UK Small Aneurysm Trial” in the UK and the similar ADAM study in the USA are randomized approximately 1000 cases with 4.0-5.5 cm AAAs to operation or watchful waiting. After five years, no differences were noticed with respect to AAA-specific mortality.\(^\text{16,17}\) Eventually, 5.5 cm diameter and rapid progression were accepted as surgical indications for asymptomatic patients by most surgeons. Symptomatic AAAs without rupture were usually operated on as soon as possible because of the very high risk of early rupture. In elective operations, mortality rate is about 1-5% but in emergency operations mortality rate can rise to 40-60%\(^\text{18}\).

US screening of abdominal aorta is a technically easy and valuable diagnostic tool which is associated with a reduction of AAA-related mortality.\(^\text{19}\) When we consider the high prevalence of AAA among the elderly men, AAA should be systematically screened. A national screening program should be established in our country in order to reduce mortality related to the AAA.\(^\text{3}\) The longitudinal and transverse extent of the aorta and the aneurysm, the transverse extent of the remaining perfused lumen, and the thickness and distribution of the edge of the thrombus including the branching off of the celiac trunk, the superior mesenteric artery, and the renal arteries can all be individually documented. In addition, the common iliac and the external iliac arteries can also be visualized.\(^\text{19}\)

An economic evaluation of an abdominal aortic aneurysm screening program in Italy showed that screening program can significantly reduce mortality rates associated with AAA, avoid AAA ruptures thanks to early diagnosis, and increase the life expectancy of those who had undergone screening.\(^\text{1}\) Results from a similar analysis in Canada reported that a screening program produced a gain in life expectancy of 0.049 years.\(^\text{7}\) Chichester trial\(^\text{20}\) and the Multicentre Aneurysm Screening Study (MASS)\(^\text{21}\) trial in the United Kingdom, the Viborg County study in Denmark and the Western Australia study\(^\text{22}\) identified potential participants who were 65 years old or older via population registries or regional health directories; collectively, the studies included more than 125,000 participants. These trials showed that screening reduced the incidence of ruptured AAAs and AAA-related mortality.

In this study, as a result of screening men older than 60 years of age who had undergone CAGB; we found that the percentage of patients who had aortic pathology was quite close to the upper limit reported in the literature. We attribute this to atherosclerotic disease and higher risk factors. In our continuing study, screening for AAA is feasible in patients who will undergo CAGB, especially men older than 65 years of age.

Conflict of Interest

Authors declared no conflict of interest or financial support.
REFERENCES

